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Abstract

The present investigation is concerned with the effects of variable properties [density (q), viscosity (l) and thermal
conductivity (j)], Hall current (m), magnetic field (M) and suction/injection (Ws) on steady MHD laminar flow of an
electrically conducting fluid on a porous rotating disk in presence of a uniform magnetic field. The fluid properties are
taken to be strong functions of temperature. The induced magnetic field is neglected while the electron–atom collision
frequency is assumed to be relatively high, so that the Hall effect is assumed to exist. The dimensionless steady govern-
ing equations are then solved numerically by using Runge–Kutta and Shooting method, and the effects of the relative
parameters are examined.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating disk flow along with heat transfer is one of
the classical problems of fluid mechanics, which has both
theoretical and practical value. The importance of heat
transfer from a rotating body can be ascertained in cases
of various types of machinery, for example computer
disk derives (see [1]) and gas turbine rotors (see [2]).

The rotating-disk problem was first formulated by
von-Karmann [3]. He has shown that Navier–Stokes
equations of steady flow of a viscous incompressible fluid
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due to an infinite rotating disk can be reduced to a set of
ordinary differential equations and solved them by
approximate integral method. But Cochran [4] pointed
out that von-Karman�s momentum integral solution con-
tained errors. He obtained more accurate results by
patching two series expansions. It has been found that
the disk acts like a centrifugal fan and hence the fluid
near the surface being thrown radially upwards. This in
turn generates an axial flow towards the disk to maintain
continuity. Benton [5], further improved Cochran�s solu-
tion and extended the hydrodynamic problem to the flow
starting impulsively from rest. The rotationally symmet-
ric flow in presence of an infinite rotating disk with differ-
ent angular velocity was studied by Roger and Lance [6].
Following a suggestion made by Batchelor [7], Stuart [8]
investigated the effect of uniform suction of fluid from
ed.

mailto:khmaleque@yahoo.com
mailto:asattar@northsouth.edu 


4964 Kh. Abdul Maleque, Md. Abdus Sattar / International Journal of Heat and Mass Transfer 48 (2005) 4963–4972
the surface of a rotating disk. Suction essentially de-
creases both the radial and azimuthal components of
velocity but increases the axial flow towards the disk at
infinity. As a consequence, the boundary layer becomes
thinner. Ockendon [9] used asymptotic method to deter-
mine the solutions of the problem for small values of suc-
tion parameter in case of a rotating disk in a rotating
fluid. On the other hand, the effect of uniform blowing
through a rotating porous disk on the flow induced by
this disk was studied by Kuiken [10].

Some interesting results on the effects of the magnetic
field on the steady flow due to the rotation of a disk of
infinite or finite extent was pointed out by El-Mistikawy
et al. [11,12]. Hassan and Attia [13] investigated the stea-
dy magneto-hydrodynamic boundary layer flow due to
an infinite disk rotating with uniform angular velocity
in the presence of an axial magnetic field. They neglected
the induced magnetic field but considered Hall current
and accordingly solved steady state equations numeri-
cally using finite difference approximation. Attia [14]
investigated the effects of suction as well as injection
along with effects of magnetic field in a flow near a rotat-
ing porous disk. It was observed by him that strong
injection tends to destabilize the laminar boundary layer
but when magnetic field works along with even strong
injection, it stabilizes the boundary layer.

In all the above studies to the authors� knowledge,
constant properties of fluid were not assumed. However,
it is known that these physical properties may change
significantly with temperature of the flow. To predict
the flow behavior accurately, it may be necessary to take
into account these variable properties. In this light Zake-
rullah and Ackroyd [15] investigated the free convection
flow above a horizontal circular disk for variable fluid
properties. Herwig [16] analyzed the influence of vari-
able properties on laminar fully developed pipe flow
with constant heat flux across the wall. It was shown
how the exponents in the property ratio method depend
on the fluid properties. The influence of temperature
dependent fluid properties on laminar boundary layers
was examined by Herwig and Wickern [17] for wedge
flow. In case of fully developed laminar flow in concen-
tric annuli, the effect of the variable property has been
studied by Herwig and Klemp [18]. Herwig [19] studied
the laminar film boiling including variable properties.

In the present paper, the steady MHD laminar flow
of a viscous conducting, compressible flow due to a por-
ous rotating disk of infinite extend is studied in the pres-
ence of an external uniform magnetic field directed
perpendicular to the disk taking the properties of the
fluid as strong functions of temperature. A uniform suc-
tion or injection through the disk is considered for the
whole range of suction or injection velocities. The gov-
erning non-linear partial differential equations are inte-
grated numerically using Nachtsheim and Swigert [20]
iteration technique.
2. Basic equations

Consider the steady MHD laminar boundary layer
flow due to a rotating disk in an electrically conducting
viscous compressible fluid in the presence of an external
magnetic field and Hall current. The equations govern-
ing the fluid flow are

Equation of continuity : r.ðqqÞ ¼ 0; ð1Þ
Navier–Stokes equation :

qðq.rÞq ¼ �rp þ ½r.ðlrÞ�qþ ðJ � BÞ; ð2Þ
The generalized Ohm’s law :

J ¼ r½E þ q� B � bðJ � BÞ�; ð3Þ
Energy equation : qCpðq.rÞT ¼ r.ðjrÞT . ð4Þ

The external uniform magnetic field is applied perpen-
dicular to the plane of the disk and has a constant mag-
netic flux density B = (0,0,B0) which is assumed
unaltered by taking magnetic Reynold�s number
Rem � 1. E is the electric field which results from charge
separation and is in the z-direction. Eq. (3) expresses the
Hall effect, where b ¼ 1

ne is the Hall factor, n is the elec-
tron concentration per unit volume and �e is the charge
of electron. In Eq. (4), we neglected the viscous energy
dissipation, Joule heating term and the heat genera-
tion/absorption coefficient.
3. Governing equations

Using non-rotating cylindrical polar coordinates
(r,/,z), the disk rotates with constant angular velocity
X and is placed at z = 0, and the fluid occupies the
region z > 0, where z is the vertical axis in the cylindrical
coordinates system with r and / as the radial and tan-
gential axes respectively. The components of the flow
velocity q are (u,v,w) in the directions of increasing
(r,/,z) respectively, the pressure is P and the density
of the fluid is q. T is the fluid temperature and the sur-
face of the rotating disk is maintained at a uniform tem-
perature Tw. Far away from the wall, the free stream is
kept at a constant temperature T1 and at a constant
pressure P1. The fluid is assumed to be Newtonian, vis-
cous and electrically conducting. The external uniform
magnetic field is applied perpendicular to the surface
of the disk and has a constant magnetic flux density
B0 which is assumed unchanged by taking small mag-
netic Reynolds number (Rem � 1). The electron–atom
collision frequency is assumed to be relatively high, so
that the Hall effect is assumed to exist. We assume that
the fluid properties, viscosity (l) and thermal conductiv-
ity (j) coefficients and density (q) are functions of tem-
perature alone and obey the following laws [21]:

l ¼ l1½T=T1�a; j ¼ j1½T=T1�b and

q ¼ q1½T=T1�d ; ð5Þ
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Fig. 1. The flow configuration and the coordinate system.
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where the a, b and d are arbitrary exponents, j1 is an
uniform thermal conductivity of heat and l1 is a uni-
form viscosity of a fluid. For the present analysis fluid
considered is flue gas. For flue gases the values of the
exponents a, b and d are taken as a = 0.7, b = 0.83
and d = �1.0.

The physical model and geometrical coordinates are
shown in Fig. 1. Due to steady axially symmetric, com-
pressible MHD laminar flow of a homogeneous fluid the
governing equations take the following form from Eq.
(1)–(4) as:

o

or
ðqruÞ þ o

oz
ðqrwÞ ¼ 0; ð6Þ

q u
ou
or

� v2

r
þ w

ou
oz

� �
þ rB2

0

ð1þ m2Þ ðu� mvÞ þ oP
or

¼ o

or
l
ou
or

� �
þ o

or
l
u
r

� �
þ o

oz
l
ou
oz

� �
; ð7Þ

q u
ov
or

þ uv
r
þ w

ov
oz

� �
þ rB2

0

ð1þ m2Þ ðvþ muÞ

¼ o

or
l
ov
or

� �
þ o

or
l
v
r

� �
þ o

oz
l
ov
oz

� �
; ð8Þ

q u
ow
or

þ w
ow
oz

� �
þ oP

oz

¼ o

or
l
ow
or

� �
þ 1

r
o

or
lwð Þ þ o

oz
l
ow
oz

� �
; ð9Þ

qCp u
oT
or

þ w
oT
oz

� �

¼ o

or
j
oT
or

� �
þ j

r
oT
or

þ o

oz
j
oT
oz

� �
; ð10Þ

here, r is the electrical conductivity, Cp is the specific
heat at constant pressure and m is the Hall current.

Appropriate boundary conditions for the flow in-
duced by an infinite disk (z = 0) which is started impul-
sively into steady rotation with constant angular velocity
X and a uniform suction/injection ww through the disk,
are given by

u ¼ 0; v ¼ Xr; w ¼ ww; T ¼ T w at z ¼ 0

u ! 0; v ! 0; T ! T1 P ! P1 as z ! 1.

�
ð11Þ
4. Similarity transformations

To obtain the solutions of the governing equations,
following von-Karmann, a dimensionless normal dis-
tance from the disk, g ¼ zðX=m1Þ

1
2 is introduced along

with the following representations for the radial, tangen-
tial and axial velocities, pressure and temperature
distributions:

u ¼ XrF ðgÞ; v ¼ XrGðgÞ; w ¼ ðXm1Þ
1
2HðgÞ

P � P1 ¼ 2l1XpðgÞ and T � T1 ¼ DThðgÞ;

)

ð12Þ

where m1 is a uniform kinematic viscosity of the fluid
and DT = Tw � T1. Eqs. (6)–(8) and (10) in this case
reduce to the system

H 0 þ 2F þ Hh0 1þ chð Þ�1cd ¼ 0; ð13Þ

F 00 þ ac 1þ chð Þ�1h0F 0 � F 2 � G2 þ HF 0� �
ð1þ chÞd�a

� M
1þ m2

F � mGð Þð1þ chÞ�a ¼ 0; ð14Þ

G00 þ ac 1þ chð Þ�1h0G0 � ð1þ chÞd�a 2FGþ HG0½ �

� M
1þ m2

Gþ mFð Þð1þ chÞ�a ¼ 0; ð15Þ

h00 þ bc 1þ chð Þ�1h02 � PrHh0 1þ chð Þd�b ¼ 0; ð16Þ

where, M ¼ rB2
0=Xq1 is the magnetic parameter,

Pr = l1Cp/j1 is the Prandtl number and c = DT/T1
is the relative temperature difference parameter, which
is positive for a heated surface, negative for a cooled sur-
face and zero for uniform properties. The boundary con-
ditions (11) transform to

F ð0Þ ¼ 0; Gð0Þ ¼ 1; Hð0Þ ¼ W s; hð0Þ ¼ 1;

F ð1Þ ¼ Gð1Þ ¼ hð1Þ ¼ pð1Þ ¼ 0

�
;

ð17Þ

where W s ¼ ww=
ffiffiffiffiffiffiffiffiffi
m1X

p
and is obtained from Eq. (12).

Here Ws represents a uniform suction (Ws < 0) or injec-
tion (Ws > 0) at the surface (see [22]).
5. Solutions

Numerical solutions to the transformed set of
coupled, nonlinear, differential Eqs. (13)–(16) were
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Fig. 2. Tangential velocity profiles for different step sizes.
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obtained, utilizing a modification of the program sug-
gested by Nachtsheim and Swigert. Within the context
of the initial value method and the Nachtsheim–Swigert
iteration technique the outer boundary conditions may
be functionally represented by the first order Taylor�s
series as

F ðgmaxÞ ¼ F ðX ; Y ; ZÞ
¼ F 0ðgmaxÞ þ DX F X þ DY F Y þ DZ F Z ¼ d1;

GðgmaxÞ ¼ GðX ; Y ; ZÞ
¼ G0ðgmaxÞ þ DX GX þ DY GY þ DZGZ ¼ d2;

hðgmaxÞ ¼ hðX ; Y ; ZÞ
¼ h0ðgmaxÞ þ DX hX þ DY hY þ DZ hZ ¼ d3;

with the asymptotic convergence criteria given by

F 0ðgmaxÞ ¼ F 0ðX ; Y ; ZÞ
¼ F 0

0ðgmaxÞ þ DX F 0
X þ DY F 0

Y þ DZ F 0
Z ¼ d4;

G0ðgmaxÞ ¼ G0ðX ; Y ; ZÞ
¼ G0

0ðgmaxÞ þ DX G0
X þ DY G0

Y þ DZG0
Z ¼ d5;

h0ðgmaxÞ ¼ h0ðX ; Y ; ZÞ
¼ h00ðgmaxÞ þ DX h0X þ DY h0Y þ DZ h0Z ¼ d6;

where, X = F 0(0), Y = G 0 (0), Z = h 0(0) and X, Y, Z sub-
scripts indicate partial differentiation, e.g., F X ¼ oF

oF 0ð0Þ.
The subscript 0 indicates the value of the function at
gmax to be determined from the trial integration.

Solution of these equations in a least square sense
requires determining the minimum value of E ¼ d21þ
d22 þ d23 þ d24 þ d25 þ d26 with respect to X, Y and Z. To
solve DX, DY and DZ we require to differentiate E with
respect to X, Y and Z respectively. Thus adopting this
numerical technique, a computer program was set up
for the solutions of the basic non-linear differential
equations of our problem where the integration tech-
nique was adopted as a six ordered Range–Kutta meth-
od of integration. Various groups of the parameters
c,Ws, M and m were considered in different phases. In
all the computations the step size Dg = 0.01 was selected
that satisfied a convergence criterion of 10�6 in almost
all of different phases mentioned above. Stating g1 =
g1 + Dg, the value of g1 was found to each iteration
loop. (g1)max, to each group of the parameters, has been
obtained when value of unknown boundary conditions
at g = 0 not change to successful loop with error less
than 10�6. However, different step sizes such as Dg =
0.01, Dg = 0.005 and Dg = 0.001 were also tried and
the obtained solutions have been found to be indepen-
dent of the step sizes as observed in Fig. 2.

The skin friction coefficients and the rate of heat
transfer to the surface, which are of chief physical inter-
est, are also calculated out. The action of the variable
properties in the fluid adjacent to the disk sets up a tan-
gential shear stress, which opposes the rotation of the
disk. As a consequence, it is necessary to provide a tor-
que at the shaft to maintain a steady rotation. To find
the tangential shear stress st and surface (radial) stress
sr, we apply the Newtonian formulae:

st ¼ l
ov
oz

þ 1

r
ow
o/

� �	 

z¼0

¼ l1 1þ cð ÞaRe1
2XG0ð0Þ;

and

sr ¼ l
ou
oz

þ ow
or

� �	 

z¼0

¼ l1 1þ cð ÞaRe1
2XF 0ð0Þ.

Hence the tangential and radial skin-frictions are
respectively given by

ð1þ cÞ�aRe
1
2Cft ¼ G0ð0Þ; ð18Þ

and

ð1þ cÞ�aRe
1
2Cfr ¼ F 0ð0Þ. ð19Þ

The rate of heat transfer from the disk surface to the
fluid is computed by the application of Fourier�s law as
given below

q ¼ � j
oT
oz

� �
z¼0

¼ �j1DT 1þ cð Þb X
m1

� �1
2

h0ð0Þ.

Hence the Nusselt number (Nu) is obtained as

1þ cð Þ�bRe�
1
2Nu ¼ �h0ð0Þ; ð20Þ

where Re( = Xr2/m1) is the rotational Reynolds number.
In Eqs. (18)–(20), the gradient values of G, F and h at the
surface are evaluated when the corresponding differen-
tial equations are solved satisfying the convergence
criteria.
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6. Results and discussions

As a result of the numerical calculations, the velocity
and temperature distributions for the flow are obtained
from Eqs. (13)–(16) and are displayed in Figs. 3–6 for
different values of c (relative temperature difference
parameter), Ws (suction /injection parameter), M (mag-
netic parameter) and m (Hall current) respectively. In
the present analysis the fluid considered is flue gas.
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Desseaux [22] in Table 1. The comparisons show excel-
lent agreements, hence an encouragement for the use
of the present numerical computations.

The effects of c on the radial, tangential and axial
velocity and temperature profiles are shown in
Fig. 3(a)–(d). In these figures comparison is made be-
tween the constant property and variable property solu-
tions. From Fig. 3(a), it is seen that due to existence of
the centrifugal force the radial velocity attains a maxi-
mum value close to the surface of the disk for all values
of c. The largest maximum value of the velocity is at-
tained in case of the constant property (c = 0).
Fig. 3(a) also shows that very close to the disk surface
an increase in the values of c leads to the decrease in
the values of the radial velocity while for most part of
the boundary layer at a fixed g position radial velocity
increases with the increase of the relative temperature
difference parameter c. Similar effects of c are also ob-
served in case of axial velocity profiles (Fig. 3(c)). From
Fig. 3(c) it is also observed that close to the disk surface
the positive values of c have a tendency to give rise to the
familiar inflection point profiles, which indicates that
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variable property with highly heated surface may lead to
the destabilization of the laminar flow resulting to the
development of the viscous sub-layer. From Fig. 3(b),
it is found that the tangential velocity increase with the
increasing values of c at a fixed point of the boundary
layer. Fig. 3(d) shows that non-dimensional temperature
increases with increasing values of c, but the rate of in-
crease is very small and hence the thermal boundary
layer does not vary for solutions with the consideration
of the property variations.
The effects of suction and injection (Ws) for c = 0.05,
M = m = 0.05 and Pr = 0.64 on the radial, the tangen-
tial, the axial velocity profiles and temperature profiles
are shown in Fig. 4(a)–(d). For strong suction, the axial
velocity is nearly constant; the radial velocity is very
small while tangential velocity and temperature decay
rapidly away from the surface. The fact that suction sta-
bilizes the boundary layer is also apparent from these
figures. As for the injection (Ws > 0), from Fig. 4(a)–
(c) it is observed that the boundary layer is increasingly
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blown away from the disk to form an interlayer between
the injection and the outer flow regions. From Fig. 4(b)
it is found that temperature decay more slowly away
from the surface. As in the case of temperature differ-
ence parameter, from Fig. 4(b), we again observe that
higher injection velocities have the tendency to destabi-
lize the laminar flow. In Fig. 4(a), it is observed that
for high values of injection parameter (Ws = 4), the ra-
dial velocity near the disk (for small values of g) is lower
than that for smaller values of Ws. This is due to the fact
that, with increasing values of Ws, the injected flow can
sustain axial motion to greater distances from the wall.
Then, near the wall, the radial flow which is fed by the
axial flow is expected to decrease as the injected para-
meter increases.

Imposition of a magnetic field to an electrically con-
ducting fluid creates a drag like force called the Lorentz
force. This force has the tendency to slow down the flow
around the disk at the expense of increasing its temper-
ature. This is depicted by the decreases in the radial,
tangential and axial velocity profiles and increases in
the temperature profiles as M increases as shown in



Table 1
Numerical values of the radial and tangential skin-friction coefficients and the rate of heat transfer coefficient obtained for Pr = 0.71
and M = m = c = 0

Ws Present Kelson and Desseaux [22]

F 0(0) �G 0(0) �h 0(0) F 0(0) �G 0(0) �h0(0)

4 0.2430438 0.289211e-1 0.10988e-4 0.243044 0.289211e-1 0.107326e-4
3 0.3091472 0.602891e-1 0.582267e-3 0.309147 0.602893e-1 0.576744e-3
2 0.3989332 0.1359517 0.110523e-1 0.398934 0.135952 0.110135e-1
1 0.4894776 0.3021728 0.856031e-1 0.489481 0.302173 0.848848e-1
0 0.5101430 0.6159604 0.329527 0.510233 0.615922 0.325856
�1 0.3894148 1.1756345 0.797678 0.389569 1.175222 0.793048
�2 0.2432800 2.0413676 1.450654 0.242421 2.038527 1.437782
�3 0.1668408 3.0147714 2.149055 0.165582 3.012142 2.135585
�4 0.1276609 4.0099877 2.864478 0.124742 4.005180 2.842381

Table 2
Numerical values of the radial and tangential skin-friction
coefficients and the rate of heat transfer coefficient obtained for
m =M = 0.1,Ws = �1.0 and Pr = 0.64

c F 0(0) �G 0(0) �h0(0)

�1.0 0.482014 3.336285 1.009969
�0.8 0.485064 2.776696 0.952151
�0.5 0.468276 2.086653 0.867656
�0.2 0.421738 1.538455 0.779307
0.0 0.372331 1.233757 0.720557
0.2 0.306259 0.966984 0.655588
0.5 0.168678 0.622670 0.559004
0.8 0.109027 0.518923 0.516888
1.0 �0.000367 0.370817 0.442873
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Fig. 5(a)–(d). In addition, the increases in the tem-
perature profiles as M increases are accompanied by
increases in the thermal boundary layer.

If the parameters c,Ws and M are held constants, m
illustrates the effect of Hall term on the flow. The param-
eter m has a marked effect on the velocity profiles as seen
in Fig. 6(a) and (c). It is observed that, due to an in-
crease in the magnitude of m within 0–2.0 (not precisely
determined), both radial and axial velocity profiles in-
crease. But if the magnitude of m is increased beyond
the limit of 2.0 (possibly), the velocity profiles show a
decreasing effect. This is due to the fact that for large
values of m, the term 1/(1 + m2) is very small and hence
the resistive effect of the magnetic field is diminished.
This phenomenon for small and large values of m has
been effectively explained by Hassan and Attia [13].
From Fig. 6(b) we observe that the Hall parameter m

has slightly increasing effect on the tangential velocity
profiles.

The Hall current parameter m and magnetic interac-
tion parameter M do not enter directly into the energy
Eq. (16) but its influence come through the momentum
Eqs. (14) and (15). Fig. 5(d) and Fig. 6(d) show the small
variation of temperature profiles for different values of
M and m respectively. From Fig. 5(d), it is observed that
the value of non-dimensional temperature profile in-
creases a little with the increasing values of M and this
also leads to a small rate of increase in the thermal
boundary layer thickness. The temperature profile de-
creases with the increasing values of Hall parameter m

is shown in Fig. 6(d).
Finally, the values of radial and tangential skin fric-

tions and the rate of heat transfer have been presented in
Tables 1 and 2. From Table 1, it can be seen that the val-
ues of the radial and tangential skin friction and the rate
of heat transfer coefficients decrease for increasing val-
ues of injection velocity (Ws = 0 to 4). It also can be seen
from this table that increasing the suction velocity
(Ws = 0 to �4) leads to decrease in the radial skin fric-
tion coefficient while increase in the azimuthal (tangen-
tial) skin friction and the rate of heat transfer
coefficients. It can be seen from Table 2 that the radial,
the tangential and the rate of heat transfer coefficients
decrease with the increasing values of temperature differ-
ence parameter c.
7. Conclusions

In this paper, the effects of variable properties along
with the effects of suction/injection and Hall current on
a steady MHD convective flow induced by an infinite
rotating porous disk were studied. The Nachtsheim
and Swigert [20] iteration technique based on sixth-order
Range–Kutta and Shooting method has been employed
to complete the integration of the resulting solutions.

The following conclusions can be drawn as a result of
the computations:

1. Variable properties (c) has marked effects on the
radial and axial velocity profiles. Close to the surface
of the disk these velocities slow down as c increases
but shortly after they increase with the increase of c.
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2. Due to the existence of the centrifugal force, the
radial velocity reaches a maximum value close to
the surface of the disk.

3. Close to the boundary positive values of c is found to
give rise to the familiar inflection point profile leading
to the destabilization of the laminar flow. Strong
injection also leads to the similar destabilization
effect.

4. The effect of Lorentz force or the usual resistive effect
of the magnetic field on the velocity profiles is
apparent.

5. Hall parameter m has an interesting effect on the
radial and axial velocity profiles. For large values
of m(>2.0), the resistive effects of the magnetic field
is diminished and hence the radial and axial velocity
profiles decreases with the increase of m.

6. Increasing the values of c(�1.0 to 1.0) lead to the
decrease in radial and tangential skin friction coeffi-
cients and the rate of heat transfer coefficient for
fixed values of Ws, M, m and Pr.
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